Sulfur Containing Compound Database
Pubmed ID | Year | Authors | Title | Journal | Description |
---|---|---|---|---|---|
2016 |
Aarabi, F., Kusajima, M., Tohge, T., Konishi, T., Gigolashvili, T., Takamune, M., Sasazaki, Y., Watanabe, M., Nakashita, H., Fernie, A.R., Saito, K., Takahashi, H., Hubberten, H.-M., Hoefgen, R. & Maruyama-Nakashita, A. |
Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants |
Science Advances |
||
2014 |
Andersen, T.G. & Halkier, B.A. |
Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots |
Plant Signaling & Behavior |
||
2013 |
Andersen, T.G., Nour-Eldin, H.H., Fuller, V.L., Olsen, C.E., Burow, M. & Halkier, B.A. |
Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis |
Plant Cell |
||
2014 |
Aubry, S., Smith-Unna, R.D., Boursnell, C.M., Kopriva, S. & Hibberd, J.M. |
Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism |
Plant J |
||
2013 |
Badenes-Perez, F.R., Reichelt, M., Gershenzon, J. & Heckel, D.G. |
Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans |
Phytochemistry |
||
2001 |
Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. & Feyereisen, R. |
CYP83B1, a Cytochrome P450 at the Metabolic Branch Point in Auxin and Indole Glucosinolate Biosynthesis in Arabidopsis |
Plant Cell |
||
2006 |
Barth, C. & Jander, G. |
Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense |
The Plant Journal |
||
2009 |
Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A. & Schulze-Lefert, P. |
A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense |
Science |
||
2008 |
Beekwilder, J., Leeuwen, W. Van, Dam, N.M. Van, Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B. & Verbocht, H. |
The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis |
PLoS One |
||
2006 |
Brader, G., Mikkelsen, M.D., Halkier, B.A. & Tapio Palva, E. |
Altering glucosinolate profiles modulates disease resistance in plants |
Plant J |
||
2003 |
Brown, P.D., Tokuhisa, J.G., Reichelt, M. & Gershenzon, J. |
Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana |
Phytochemistry |
||
2008 |
Burow, M., Zhang, Z.Y., Ober, J.A., Lambrix, V.M., Wittstock, U., Gershenzon, J. & Kliebenstein, D.J. |
ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis |
Phytochemistry |
||
2015 |
Burow, M., Atwell, S., Francisco, M., Kerwin, R.E., Halkier, B.A. & Kliebenstein, D.J. |
The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis |
Mol Plant |
||
2005 |
Celenza, J.L., Quiel, J.A., Smolen, G.A., Merrikh, H., Silvestro, A.R., Normanly, J. & Bender, J. |
The Arabidopsis ATR1 Myb Transcription Factor Controls Indolic Glucosinolate Homeostasis |
Plant Physiology |
||
2003 |
Chen, S., Glawischnig, E., J rgensen, K., Naur, P., J rgensen, B., Olsen, C.-E., Hansen, C.H., Rasmussen, H., Pickett, J.A. & Halkier, B.A. |
CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis |
Plant Journal |
||
N/A |
2014 |
Choi, S.H., Park, S., Lim, Y.P., Kim, S.J., Park, J.T. & An, G. |
Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position |
Hort Environ Biotechnol |
|
2009 |
Clay, N.K., Adio, A.M., Denoux, C., Jander, G. & Ausubel, F.M. |
Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response |
Science |
||
2004 |
Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F. & Abel, S. |
Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis |
Plant Journal |
||
2014 |
Frerigmann, H. & Gigolashvili, T. |
MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana |
Mol Plant |
||
2014 |
Frerigmann, H. & Gigolashvili, T. |
Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency |
Front Plant Sci |
||
2005 |
Gachon, C.M.M., Langlois-Meurinne, M., Henry, Y. & Saindrenan, P. |
Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications |
Plant Molecular Biology |
||
2009 |
Geu-Flores, F., Nielsen, M.T., Nafisi, M., M?ldrup, M.E., Olsen, C.E., Motawia, M.S. & Halkier, B.A. |
Glucosinolate engineering identifies a [gamma]-glutamyl peptidase |
Nat Chem Biol |
||
2009 |
Gigolashvili, T., Yatusevich, R., Rollwitz, I., Humphry, M., Gershenzon, J. & Flu, U. |
The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana |
Plant Cell |
||
2007 |
Gigolashvili, T., Berger, B., Mock, H. & Mu, C. |
The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana |
Plant Journal |
||
2007 |
Gigolashvili, T., Yatusevich, R., Berger, B., M?ller, C. & Fl?gge, U.-I. |
The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana |
Plant Journal |
||
2006 |
Grubb, C.D. & Abel, S. |
Glucosinolate metabolism and its control |
Trends Plant Sci |
||
2014 |
Grubb, C.D., Zipp, B.J., Kopycki, J., Schubert, M., Quint, M., Lim, E., Bowles, D.J., Pedras, M.S.C. & Abel, S. |
Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis |
Plant Journal |
||
2001 |
Hansen, C.H., Wittstock, U., Olsen, C.E., Hick, A.J., Pickett, J.A. & Halkier, B.A. |
Cytochrome p450 CYP79F1 from arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates |
J Biol Chem |
||
2007 |
Hansen, B.G., Kliebenstein, D.J., Halkier, B.A. & Ave, O.S. |
Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis |
Plant Journal |
||
2008 |
Hansen, B.G., Kerwin, R.E., Ober, J.A., Lambrix, V.M., Mitchell-olds, T., Gershenzon, J., Halkier, B.A. & Kliebenstein, D.J. |
A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis |
Plant Physiology |
||
2008 |
Hayes, J.D., Kelleher, M.O. & Eggleston, I.M. |
The cancer chemopreventive actions of phytochemicals derived from glucosinolates |
Eur J Nutr |
||
2009 |
He, Y., Mawhinney, T.P., Preuss, M.L., Schroeder, A.C., Chen, B., Abraham, L., Jez, J.M. & Chen, S. |
A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis |
Plant Journal |
||
2010 |
He, Y., Chen, B., Pang, Q., Strul, J.M. & Chen, S. |
Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis |
Plant Cell Physiol |
||
2011 |
He, Y., Galant, A., Pang, Q., Strul, J.M., Balogun, S.F., Jez, J.M. & Chen, S. |
Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana |
J Biol Chem |
||
2005 |
Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J. & Saito, K. |
Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics |
J Biol Chem |
||
2007 |
Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., Goda, H. & Nishizawa, O.I. |
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis |
Proc Natl Acad Sci U S A |
||
2015 |
Hirschmann, F. & Papenbrock, J. |
The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana |
Plant Physiology and Biochemistry |
||
2010 |
Hiruma, K., Onozawa-Komori, M., Takahashi, F., Asakura, M., Bednarek, P., Okuno, T., Schulze-Lefert, P. & Takano, Y. |
Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens |
Plant Cell |
||
2013 |
Hiruma, K., Fukunaga, S., Bednarek, P., Pislewska-Bednarek, M., Watanabe, S., Narusaka, Y., Shirasu, K. & Takano, Y. |
Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs |
Proc Natl Acad Sci U S A |
||
2000 |
Hull, A.K., Vij, R. & Celenza, J.L. |
Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis |
Proc Natl Acad Sci U S A |
||
2009 |
Ibdah, M. & Pichersky, E. |
Arabidopsis Chy1 null mutants are deficient in benzoic acid-containing glucosinolates in the seeds |
Plant Biol (Stuttg) |
||
2009 |
Ibdah, M., Chen, Y.T., Wilkerson, C.G. & Pichersky, E. |
An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic Acid |
Plant Physiology |
||
2009 |
Janowitz, T., Trompetter, I. & Piotrowski, M. |
Evolution of nitrilases in glucosinolate-containing plants |
Phytochemistry |
||
2001 |
Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. & Mitchell-Olds, T. |
Genetic Control of Natural Variation in Arabidopsis Glucosinolate Accumulation |
Plant Physiology |
||
N/A |
2001 |
Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. & Mitchell-Olds, T. |
Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate ? dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis |
The Plant Cell |
|
2007 |
Kliebenstein, D.J., D?Auria, J.C., Behere, A.S., Kim, J.H., Gunderson, K.L., Breen, J.N., Lee, G., Gershenzon, J., Last, R.L. & Jander, G. |
Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana |
Plant Journal |
||
2008 |
Knill, T., Schuster, J., Reichelt, M., Gershenzon, J. & Binder, S. |
Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis |
Plant Physiology |
||
2009 |
Knill, T., Reichelt, M., Paetz, C., Gershenzon, J. & Binder, S. |
Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation |
Plant Mol Biol |
||
2015 |
Kong, W., Li, Y., Zhang, M., Jin, F. & Li, J. |
A Novel Arabidopsis MicroRNA Promotes IAA Biosynthesis via the Indole-3-acetaldoxime Pathway by Suppressing SUPERROOT1 |
Plant and Cell Physiology |
||
2016 |
Kong, W., Li, J., Yu, Q., Cang, W., Xu, R., Wang, Y. & Ji, W. |
Two Novel Flavin-Containing Monooxygenases Involved in Biosynthesis of Aliphatic Glucosinolates |
Front Plant Sci |
||
2015 |
L?chler, K., Imhof, J., Reichelt, M., Gershenzon, J. & Binder, S. |
The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism |
Plant Mol Biol |
||
2012 |
Laluk, K., Prasad, K.V.S.K., Savchenko, T., Celesnik, H., Dehesh, K., Levy, M. & Reddy, A.S.N. |
The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis |
Plant Cell Physiol |
||
2012 |
Lee, S., Kaminaga, Y., Cooper, B., Pichersky, E., Dudareva, N. & Chapple, C. |
Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis |
Plant Journal |
||
2005 |
Levy, M., Wang, Q., Kaspi, R., Parrella, M.P. & Abel, S. |
Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense |
Plant Journal |
||
2008 |
Li, J., Hansen, B.G., Ober, J.A., Kliebenstein, D.J. & Halkier, B.A. |
Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis |
Plant Physiology |
||
2011 |
Li, J., Kristiansen, K.A., Hansen, B.G. & Halkier, B.A. |
Cellular and subcellular localization of flavin- monooxygenases involved in glucosinolate biosynthesis |
Journal of Experimental Botany |
||
2013 |
Luczak, S., Forlani, F. & Papenbrock, J. |
Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics |
Plant Physiology and Biochemistry |
||
2014 |
Madsen, S.R., Olsen, C.E., Nour-Eldin, H.H. & Halkier, B.A. |
Elucidating the role of transport processes in leaf glucosinolate distribution |
Plant Physiology |
||
2006 |
Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K. & Takahashi, H. |
Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism |
Plant Cell |
||
2013 |
Miao, H., Wei, J., Zhao, Y., Yan, H., Sun, B., Huang, J. & Wang, Q.o |
Glucose signalling positively regulates aliphatic glucosinolate biosynthesis |
Journal of Experimental Botany |
||
2000 |
Mikkelsen, M.D., Hansen, C.H., Wittstock, U. & Halkier, B.A. |
Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid |
J Biol Chem |
||
2004 |
Mikkelsen, M.D., Naur, P. & Halkier, B.A. |
Arabidopsis mutants in the C?S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis |
Plant Journal |
||
2011 |
M?ldrup, M.E., Geu-flores, F., Olsen, C.E. & Halkier, B.A. |
Modulation of sulfur metabolism enables efficient glucosinolate engineering |
BMC Biotechnol |
||
2009 |
Mugford, S.G., Yoshimoto, N., Reichelt, M., Wirtz, M., Hill, L., Mugford, S.T., Noji, M., Takahashi, H., Kramell, R., Gigolashvili, T., Flu, U., Saito, K., Kopriva, S. & Gershenzon, J. |
Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites |
Plant Cell |
||
2003 |
Naur, P., Petersen, B.L., Mikkelsen, M.D., Bak, S., Rasmussen, H., Olsen, C.E. & Halkier, B.A. |
CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing Oximes in the Biosynthesis of Glucosinolates in Arabidopsis |
Plant Physiology |
||
2012 |
Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R. & J?rgensen, M.E. |
NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds |
Nature |
||
2009 |
Pfalz, M., Vogel, H. & Kroymann, J. |
The Gene Controlling the Indole Glucosinolate Modifier1 Quantitative Trait Locus Alters Indole Glucosinolate Structures and Aphid Resistance in Arabidopsis |
Plant Cell |
||
2011 |
Pfalz, M., Mikkelsen, M.D., Olsen, C.E., Halkier, B.A. & Kroymann, J. |
Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification |
Plant Cell |
||
2016 |
Pfalz, M., Mukhaimar, M., Perreau, F., Kirk, J., Hansen, C.I.C., Olsen, C.E., Agerbirk, N. & Kroymann, J. |
Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O -methyltransferase 5 |
Plant Physiology |
||
2004 |
Piotrowski, M., Schemenewitz, A., Lopukhina, A., Mu, A., Janowitz, T., Weiler, E.W. & Oecking, C. |
Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure |
J Biol Chem |
||
2012 |
Redovnikovi_, I.R., Textor, S., Lisni_, B. & Gershenzon, J. |
Expression pattern of the glucosinolate side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana in different organs and developmental stages |
Plant Physiol Biochem |
||
2002 |
Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T. & Gershenzon, J. |
Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana |
Phytochemistry |
||
N/A |
2016 |
Robin, A.H.K., Yi, G.E., Laila, R., Yang, K., Park, J.I., Kim, H.R. & Nou, I.S. |
Expression profiling of glucosinolate biosynthetic genes in Brassica oleracea L. var. capitata inbred lines reveals their association with glucosinolate content |
Molecules |
|
2008 |
Rouached, H., Wirtz, M., Alary, R., Hell, R., Arpat, A.B., Davidian, J.C., Fourcroy, P. & Berthomieu, P. |
Differential Regulation of the Expression of Two High-Affinity Sulfate Transporters, SULTR1.1 and SULTR1.2, in Arabidopsis |
Plant Physiology |
||
2009 |
Sawada, Y., Kuwahara, A., Nagano, M., Narisawa, T., Sakata, A., Saito, K. & Yokota Hirai, M. |
Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase |
Plant Cell Physiol |
||
2009 |
Sawada, Y., Toyooka, K., Kuwahara, A., Sakata, A., Nagano, M., Saito, K. & Hirai, M.Y. |
Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis |
Plant Cell Physiol |
||
2008 |
Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F. & Reymond, P. |
The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis |
Plant Journal |
||
2006 |
Schuster, J., Knill, T., Reichelt, M., Gershenzon, J. & Binder, S. |
Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis |
Plant Cell |
||
2006 |
Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B. & Witt, I. |
DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis |
Plant Journal |
||
2007 |
S?nderby, I.E., Hansen, B.G., Bjarnholt, N., Ticconi, C., Halkier, B.A. & Kliebenstein, D.J. |
A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates |
PLoS One |
||
2010 |
S?nderby, I.E., Geu-Flores, F. & Halkier, B.A. |
Biosynthesis of glucosinolates--gene discovery and beyond |
Trends Plant Sci |
||
2013 |
Schweizer, F., Fern?ndez-calvo, P., Zander, M., Diez-diaz, M., Fonseca, S., Glauser, G., Lewsey, M.G., Ecker, J.R., Solano, R. & Reymond, P. |
Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2,MYC3, andMYC4RegulateGlucosinolate Biosynthesis, Insect Performance, and Feeding Behavior |
The Plant Cell |
||
2007 |
Textor, S., de Kraker, J.-W., Hause, B., Gershenzon, J. & Tokuhisa, J.G. |
MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis |
Plant Physiology |
||
2016 |
Vik, D., Crocoll, C., Andersen, T.G., Burow, M. & Halkier, B.A. |
CB5C affects the glucosinolate profile in Arabidopsis thaliana |
Plant Signal Behav |
||
2007 |
Wentzell, A.M., Rowe, H.C., Hansen, B.G., Ticconi, C., Halkier, B.A. & Kliebenstein, D.J. |
Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways |
PLoS Genet |
||
2010 |
Wittstock, U. & Burow, M. |
Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological Significance |
Arabidopsis Book |
||
2000 |
Wittstock, U. & Halkier, B.A. |
Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-Phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate |
J Biol Chem |
||
2016 |
Wittstock, U., Meier, K., D?rr, F. & Ravindran, B.M. |
NSP-dependent simple nitrile formation dominates upon breakdown of major aliphatic glucosinolates in roots, seeds, and seedlings of Arabidopsis thaliana Columbia-0 |
Frontiers in Plant Science |
||
2010 |
Yatusevich, R., Mugford, S.G., Matthewman, C., Gigolashvili, T., Frerigmann, H., Delaney, S., Koprivova, A. & Flu, U. |
Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana |
Plant Journal |
||
2015 |
Yi, G., Hasan, A., Robin, K., Yang, K., Park, J., Kang, J., Yang, T. & Nou, I. |
Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies |
Molecules |
||
N/A |
2009 |
Zang, Y.-X., Kim, D.-H., Park, B.-S. & Hong, S.-B. |
Metabolic engineering of indole glucosinolates in Chinese cabbage hairy roots expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1 |
Biotechnology and Bioprocess Engineering |
|
2015 |
Zhang, Y., Li, B., Huai, D., Zhou, Y. & Kliebenstein, D.J. |
The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana |
Front Plant Sci |
||
2015 |
Zhao, Y., Wang, J., Liu, Y., Miao, H., Cai, C., Shao, Z., Guo, R., Sun, B., Jia, C., Zhang, L., Gigolashvili, T. & Wang, Q. |
Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis |
Plant Journal |
||
2003 |
Mikkelsen, M.D. & Halkier, B.A. |
Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava |
Plant Physiology |
||
2016 |
Chung, I.M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. |
Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa) |
3 Biotech |
||
2007 |
Padilla, G., Cartea, M.E., Velasco, P., de Haro, A. & Ord?s, A. |
Variation of glucosinolates in vegetable crops of Brassica rapa |
Phytochemistry |
||
2009 |
Kissen, R. & Bones, A.M. |
Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana |
J Biol Chem |
||
2013 |
Angelovici, R., Lipka, A.E., Deason, N., Gonzalez-jorge, S., Lin, H., Cepela, J., Buell, R., Gore, M.A. & Dellapenna, D. |
Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds |
The Plant Cell |
||
N/A |
1997 |
Bennett, R.N., Kiddle, G. & Wallsgrove, R.M. |
Biosynthesis of benzylglucosinolates, cyanogenic glucosides and phenylpropanoids in Carica papaya |
Phytochemistry |
|
2005 |
Conaway, C.C., Wang, C.-X., Pittman, B., Yang, Y.M., Schwartz, J.E., Tian, D., McIntee, E.J., Hecht, S.S. & Chung, F.-L. |
Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice |
Cancer Research |
||
2012 |
Dinkova-Kostova, A.T. & Kostov, R.V. |
Glucosinolates and isothiocyanates in health and disease |
Trends Mol Med |
||
N/A |
2002 |
Fahey, J.W., Haristoy, X., Dolan, P.M., Kensler, T.W., Scholtus, I., Stephenson, K.K., Talalay, P. & Lozniewski, A. |
Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors |
Proc Natl Acad Sci U S A |
|
2001 |
Fahey, J.W., Zalcmann, A.T. & Talalay, P. |
The chemical diversity and distribution of glucosinolates and isothiocyanates among plants |
Phytochemistry |
||
2007 |
Falk, K.L., Tokuhisa, J.G. & Gershenzon, J. |
The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms |
Plant Biol (Stuttg) |
||
N/A |
2004 |
Field, B., Cardon, G., Traka, M., Botterman, J., Vancanneyt, G. & Mithen, R. |
Glucosinolate and amino acid biosynthesis |
Plant Physiology |
|
2008 |
Gigolashvili, T., Engqvist, M., Yatusevich, R., M?ller, C. & Fl?gge, U.I. |
HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana |
New Phytologist |
||
2014 |
Ishida, M., Hara, M., Fukino, N., Kakizaki, T. & Morimitsu, Y. |
Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables |
Breeding Sci |
||
2015 |
Jensen, L.M., Kliebenstein, D.J. & Burow, M. |
Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis |
Front Plant Sci |
||
2014 |
Jensen, L.M., Halkier, B.A. & Burow, M. |
How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport |
Biol Chem |
||
2015 |
J?rgensen, M.E., Nour-Eldin, H.H. & Halkier, B.A. |
Transport of defense compounds from source to sink: lessons learned from glucosinolates |
Trends Plant Sci |
||
2006 |
Klein, M., Reichelt, M., Gershenzon, J. & Papenbrock, J. |
The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed |
FEBS J |
||
2012 |
Kopriva, S., Mugford, S.G., Baraniecka, P., Lee, B.R., Matthewman, C.A. & Koprivova, A. |
Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis |
Front Plant Sci |
||
2011 |
de Kraker, J.W. & Gershenzon, J. |
From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis |
Plant Cell |
||
2001 |
Kroymann, J., Textor, S., Tokuhisa, J.G., Falk, K.L., Bartram, S., Gershenzon, J. & Mitchell-Olds, T. |
A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway |
Plant Physiology |
||
2012 |
Kuchernig, J.C., Burow, M. & Wittstock, U. |
Evolution of specifier proteins in glucosinolate-containing plants |
BMC Evol Biol |
||
N/A |
2015 |
Li, Y., Sawada, Y., Hirai, A., Sato, M., Kuwahara, A., Yan, X. & Hirai, M.Y. |
Altered regulation of MYB genes changes the aliphatic glucosinolate accumulation under long-term sulfur deficiency in Arabidopsis |
Molecular Physiology and Ecophysiology of Sulfur |
|
2003 |
Mikkelsen, M.D., Petersen, B.L., Glawischnig, E., Jensen, A.B., Andreasson, E. & Halkier, B.A. |
Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways |
Plant Physiology |
||
2002 |
Mikkelsen, M.D., Petersen, B.L., Olsen, C.E., Halkier, B.A. |
Biosynthesis and metabolic engineering of glucosinolates |
Amino Acids |
||
2012 |
M?ldrup, M.E., Geu-Flores, F., de Vos, M., Olsen, C.E., Sun, J., Jander, G. & Halkier, B.A. |
Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth) |
Plant Biotechnol J |
||
2006 |
Myzak, M.C., Dashwood, W.M., Orner, G.A., Ho, E. & Dashwood, R.H. |
Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice |
FASEB J |
||
N/A |
2009 |
Nour-Eldin, H.H. & Halkier, B.A. |
Piecing together the transport pathway of aliphatic glucosinolates |
Phytochem Rev |
|
2016 |
Nowicki, D., Rodzik, O., Herman-Antosiewicz, A. & Szalewska-Pa_asz, A. |
Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action |
Sci Rep |
||
2017 |
Robin, A.H.K., Hossain, M.R., Park, J.I., Kim, H.R. & Nou, I.S. |
Glucosinolate profiles in cabbage genotypes influence the preferential feeding of diamondback moth (Plutella xylostella) |
Front Plant Sci |
||
N/A |
2016 |
Santolamazza-Carbone, S., Sotelo, T., Velasco, P. & Cartea, M.E. |
Antibiotic properties of the glucosinolates of Brassica oleracea var. acephala similarly affect generalist and specialist larvae of two lepidopteran pests |
J Pest Sci |
|
2014 |
Santolamazza-Carbone, S., Velasco, P., Soengas, P. & Cartea, M.E. |
Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala |
Oecologia |
||
2016 |
Frerigmann, H., Pi_lewska-Bednarek, M., S?nchez-Vallet, A., Molina, A., Glawischnig, E., Gigolashvili, T. & Bednarek, P. |
Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products |
Mol Plant |
||
2018 |
Lee, J.H., Lee, J., Kim, H., Chae, W.B., Kim, S.J., Lim, Y.P. & Oh, M.H. |
Brassinosteroids regulate glucosinolate biosynthesis in Arabidopsis thaliana |
Physiol Plant |
||
N/A |
2015 |
Wang, Z., Yang, R., Guo, L., Fang, M., Zhou, Y. & Gu, Z. |
Effects of abscisic acid on glucosinolate content, isothiocyanate formation and myrosinase activity in cabbage sprouts |
International Journal of Food Science and Technology |
|
2017 |
Schweizer, F., Heidel-Fischer, H., Vogel, H. & Reymond, P. |
Arabidopsis glucosinolates trigger a contrasting transcriptomic response in a generalist and a specialist herbivore |
Insect Biochem Mol Biol |
||
2017 |
Seo, M.S. & Kim, J.S. |
Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae |
Molecules |
||
2016 |
Schmiesing, A., Emonet, A., Gouhier-Darimont, C. & Reymond, P. |
Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to Pieris brassicae egg extract |
Plant Physiology |
||
2017 |
Mostafa, I., Yoo, M.J., Zhu, N., Geng, S., Dufresne, C., Abou-Hashem, M., El-Domiaty, M. & Chen, S. |
Membrane proteomics of Arabidopsis glucosinolate mutants cyp79B2/B3 and myb28/29 |
Front Plant Sci |
||
2017 |
Lee, J.G., Lim, S., Kim, J. & Lee, E.J. |
The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest |
Food Chem |
||
2014 |
Koprivova, A. & Kopriva, S. |
Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road |
Front Plant Sci |
||
N/A |
2010 |
Kim, J.K., Chu, S.M., Kim, S.J., Lee, D.J., Lee, S.Y., Lim, S.H., Ha, S.-H., Kweon, S.J. & Cho, H.S. |
Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. Pekinensis |
Food Chem |
|
2012 |
Kong, X.Y., Kissen, R. & Bones, A.M. |
Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: Dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions |
Phytochemistry |
||
2005 |
Zabala, Mde., Grant, M., Bones, A.M., Bennett, R., Lim, Y.S., Kissen, R. & Rossiter, J.T. |
Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana |
Phytochemistry |
||
2006 |
Burow, M., Markert, J., Gershenzon, J. & Wittstock, U. |
Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates |
FEBS J |
||
2015 |
Angelino, D., Dosz, E.B., Sun, J., Hoeflinger, J.L., Van Tassell, M.L., Chen, P., Harnly, J.M., Miller, M.J. & Jeffery, E.H. |
Myrosinase-dependent and ?independent formation and control of isothiocyanate products of glucosinolate hydrolysis |
Front Plant Sci |
||
2007 |
Kim, J.H. & Jander, G. |
Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate |
Plant J |
||
2009 |
Sun, J.Y., S?nderby, I.E., Halkier, B.A., Jander, G. & de Vos, M. |
Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella |
J Chem Ecol |
||
2001 |
Tierens, K.F., Thomma, B.P., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B.P. & Broekaert, W.F. |
Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens |
Plant Physiology |
||
2017 |
Burow, M. & Halkier, B.A. |
How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study |
Curr Opin Plant Biol |
||
N/A |
2008 |
Agerbirk, N., De Vos, M., Kim, J.H. & Jander, G. |
Indole glucosinolate breakdown and its biological effects |
Phytochem Rev |
|
2009 |
Hopkins, R.J., van Dam, N.M. & van Loon, J.J. |
Role of glucosinolates in insect-plant relationships and multitrophic interactions |
Annu Rev Entomol |
||
2006 |
Gills, J.J., Jeffery, E.H., Matusheski, N.V., Moon, R.C., Lantvit, D.D. & Pezzuto, J.M. |
Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion |
Cancer Lett |
||
2006 |
Kuroiwa, Y., Nishikawa, A., Kitamura, Y., Kanki, K., Ishii, Y., Umemura, T. & Hirose, M. |
Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters |
Cancer Lett |
||
2011 |
Geu-Flores, F., M?ldrup, M.E., B?ttcher, C., Olsen, C.E., Scheel, D. & Halkier, B.A. |
Cytosolic gamma-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis |
Plant Cell |
||
2012 |
Mikkelsen, M.D., Buron, L.D., Salomonsen, B., Olsen, C.E., Hansen, B.G., Mortensen, U.H. & Halkier, B.A. |
Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform |
Metab Eng |
||
2013 |
Rao, C.V. |
Benzyl isothiocyanate: Double trouble for breast cancer cells |
Cancer Prev Res |
||
2014 |
Park, S., Valan Arasu, M., Lee, M.K., Chun, J.H., Seo, J.M., Lee, S.W., Al-Dhabi, N.A. & Kim, S.J. |
Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.) |
Food Chem |
||
2017 |
Klein, A.P. & Sattely, E.S. |
Biosynthesis of cabbage phytoalexins from indole glucosinolate |
Proc Natl Acad Sci U S A |
||
N/A |
2017 |
Aires, A. & Carvalho, R. |
Rapid separation of indole glucosinolates in roots of chinese cabbage (Brassica rapa subsp. Pekinensis) by high-performance liquid chromatography with diode array detection |
International Journal of Analytical Chemistry |
|
N/A |
2017 |
Doheny-Adams, T., Redeker, K., Kittipol, V., Bancroft, I. & Hartley, S.E. |
Development of an efficient glucosinolate extraction method |
Plant Methods |
|
2017 |
Grosser, K. & van Dam, N.M. |
A straightforward method for glucosinolate extraction and analysis with high-pressure liquid chromatography (HPLC) |
J Vis Exp |
||
N/A |
2013 |
Rossetto, M.R.M., Shiga, T.M., Vianello, F. & Lima, G.P.P. |
Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables |
LWT - Food Science and Technology |
|
2016 |
Borpatragohain, P., Rose, T.J. & King, G.J. |
Fire and brimstone: molecular interactions between sulfur and glucosinolate biosynthesis in model and crop Brassicaceae |
Front Plant Sci |
||
N/A |
2013 |
Williams, D.J., Pun, S., Chaliha, M, Scheelings, P. & O?Hare, T. |
An unusual combination in papaya (Carica papaya): The good (glucosinolates) and the bad (cyanogenic glycosides) |
Journal of Food Composition and Analysis |
|
2017 |
Khare, D., Choi, H., Huh, S.U., Bassin, B., Kim, J., Martinoia, E., Sohn, K.H., Paek, K.H. and Lee, Y. |
Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. |
Proceedings of the National Academy of Sciences |
||
2016 |
Chapman, A., Lindermayr, C. and Glawischnig, E. |
Expression of antimicrobial peptides under control of a camalexin-biosynthetic promoter confers enhanced resistance against Pseudomonas syringae. |
Phytochemistry |
||
2016 |
Liu, S., Bartnikas, L.M., Volko, S.M., Ausubel, F.M. and Tang, D. |
Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. |
Front Plant Sci |
||
2015 |
Savatin, D.V., Bisceglia, N.G., Gravino, M., Fabbri, C., Pontiggia, D. and Mattei, B. |
Camalexin Quantification in?Arabidopsis thaliana?Leaves Infected with?Botrytis cinerea. |
Bio Protoc |
||
2015 |
Lemari?, S., Robert-Seilaniantz, A., Lariagon, C., Lemoine, J., Marnet, N., Levrel, A., Jubault, M., Manzanares-Dauleux, M.J. and Gravot, A. |
Camalexin contributes to the partial resistance of Arabidopsis thaliana to the biotrophic soilborne protist Plasmodiophora brassicae. |
Front Plant Sci |
||
2015 |
Frerigmann, H., Glawischnig, E. and Gigolashvili, T. |
The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. |
Front Plant Sci |
||
2014 |
Cargnel, M.D., Demkura, P.V. and Ballar?, C.L. |
Linking phytochrome to plant immunity: low red?:?far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. |
New Phytol |
||
2013 |
Kettles, G.J., Drurey, C., Schoonbeek, H.J., Maule, A.J. and Hogenhout, S.A. |
Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. |
New Phytol |
||
2012 |
Zandalinas, S.I., Vives-Peris, V., Go_mez-Cadenas, A. and Arbona, V. |
A fast and precise method to identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and biological information. |
J Agric Food Chem |
||
2012 |
Wang, M.Y., Liu, X.T., Chen, Y., Xu, X.J., Yu, B., Zhang, S.Q., Li, Q. and He, Z.H. |
Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. |
J Integr Plant Biol |
||
2012 |
Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., Shibata, D. and Ohta, D. |
Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. |
Mol Plant Microbe Interact |
||
2011 |
Su, T., Xu, J., Li, Y., Lei, L., Zhao, L., Yang, H., Feng, J., Liu, G. and Ren, D. |
Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. |
Plant Cell |
||
2009 |
Persson, M., Staal, J., Oide, S. and Dixelius, C. |
Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances. |
New Phytol |
||
2009 |
Stefanato, F.L., Abou_Mansour, E., Buchala, A., Kretschmer, M., Mosbach, A., Hahn, M., Bochet, C.G., M?traux, J.P. and Schoonbeek, H.J. |
The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. |
Plant J |
||
2009 |
B?ttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D. and Glawischnig, E. |
The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. |
Plant Cell |
||
2007 |
Nafisi, M., Goregaoker, S., Botanga, C.J., Glawischnig, E., Olsen, C.E., Halkier, B.A. and Glazebrook, J. |
Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. |
Plant Cell |
||
2007 |
Glawischnig, E. |
Camalexin. |
Phytochemistry |
||
2006 |
Schuhegger, R., Nafisi, M., Mansourova, M., Petersen, B.L., Olsen, C.E., Svato_, A., Halkier, B.A. and Glawischnig, E. |
CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. |
Plant Physiol |
||
2007 |
Schuhegger, R., Rauhut, T. and Glawischnig, E. |
Regulatory variability of camalexin biosynthesis. |
J Plant Physiol |
||
2006 |
Glawischnig, E. |
The role of cytochrome P450 enzymes in the biosynthesis of camalexin. |
Biochem Soc Trans |
||
2003 |
Bohman, S., Staal, J., Thomma, B.P., Wang, M. and Dixelius, C. |
Characterisation of an?Arabidopsis?Leptosphaeria maculans?pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling |
The Plant Journal |
||
2003 |
Ferrari, S., Plotnikova, J.M., De Lorenzo, G. and Ausubel, F.M. |
Arabidopsis?local resistance to?Botrytis cinerea?involves salicylic acid and camalexin and requires?EDS4?and?PAD2, but not?SID2,?EDS5?or?PAD4 |
The Plant Journal |
||
1999 |
Zhou, N., Tootle, T.L. and Glazebrook, J. |
Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. |
The Plant Cell |
||
1999 |
Nawrath, C. and M?traux, J.P. |
Salicylic acid induction?deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. |
The Plant Cell |
||
2010 |
Schlaeppi, K., Abou_Mansour, E., Buchala, A. and Mauch, F. |
Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. |
Plant J |
||
2004 |
Glawischnig, E., Hansen, B.G., Olsen, C.E. and Halkier, B.A. |
Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. |
Proc Natl Acad Sci U S A |
||
2015 |
M?ller, T.M., B?ttcher, C., Morbitzer, R., G?tz, C.C., Lehmann, J., Lahaye, T. and Glawischnig, E. |
TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. |
Plant Physiol |
||
2013 |
Klein, A.P., Anarat_Cappillino, G. and Sattely, E.S. |
Minimum set of cytochromes P450 for reconstituting the biosynthesis of camalexin, a major Arabidopsis antibiotic. |
Angew Chem Int Ed Engl |
||
2013 |
M?ldrup, M.E., Salomonsen, B., Geu-Flores, F., Olsen, C.E. and Halkier, B.A. |
De novo genetic engineering of the camalexin biosynthetic pathway. |
J Biotechnol |
||
2008 |
Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G. and Ren, D. |
Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. |
J Biol Chem |
||
2011 |
Geu-Flores, F., M?ldrup, M.E., B?ttcher, C., Olsen, C.E., Scheel, D. and Halkier, B.A. |
Cytosolic _-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. |
Plant Cell |
||
1998 |
Zhao, J., Williams, C.C. and Last, R.L. |
Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. |
Plant Cell |
||
2011 |
Stotz, H.U., Sawada, Y., Shimada, Y., Hirai, M.Y., Sasaki, E., Krischke, M., Brown, P.D., Saito, K. and Kamiya, Y. |
Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. |
Plant J |
||
2011 |
Robert_Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y. and Jones, J.D. |
The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. |
Plant J |
||
N/A |
2001 |
Kagan, I.A. and Hammerschmidt, R. |
Pitfalls in screening for camalexin-deficient mutants: effects of kinetics, pathogen choice and inoculum concentration on apparent camalexin accumulation in wild-type (Columbia) and pad2 Arabidopsis |
Physiological and molecular plant pathology |
|
2005 |
Denby, K.J., Jason, L.J., Murray, S.L. and Last, R.L. |
ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways |
Plant J |
||
2011 |
Pedras, M.S.C., Hossain, S. and Snitynsky, R.B. |
Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. |
Phytochemistry. |
||
N/A |
2003 |
Yannai, S. |
Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients |
New York: Chapman and Hall/CRC. |
|
2014 |
Gupta, P., Wright, S. E., Kim, S. H., & Srivastava, S. K. |
Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. |
Biochimica et Biophysica Acta (BBA)-Reviews on Cancer |
||
2013 |
Watson, G. W., Beaver, L. M., Williams, D. E., Dashwood, R. H., & Ho, E. |
Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. |
The AAPS journal |
||
2014 |
Lippmann, D., Lehmann, C., Florian, S., Barknowitz, G., Haack, M., Mewis, I., Wiesner, M., Schreiner, M., Glatt, H., Brigelius-Floh?, R. & Kipp, A. P. |
Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. |
Food & function |
||
2016 |
Chung, I. M., Rekha, K., Rajakumar, G., & Thiruvengadam, M. |
Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). |
3 Biotech |
||
2010 |
Kronbak, R., Duus, F., & Vang, O. |
Effect of 4-methoxyindole-3-carbinol on the proliferation of colon cancer cells in vitro, when treated alone or in combination with indole-3-carbinol. |
Journal of agricultural and food chemistry |
||
2012 |
Li, Z. Y., Wang, Y., Shen, W. T., & Zhou, P. |
Content determination of benzyl glucosinolate and anti?cancer activity of its hydrolysis product in Carica papaya L. |
Asian Pacific journal of tropical medicine |
||
2016 |
Mazumder, A., Dwivedi, A. and du Plessis, J. |
Sinigrin and its therapeutic benefits |
Molecules |
||
1997 |
Leoni, O., Iori, R., Palmieri, S., Esposito, E., Menegatti, E., Cortesi, R., & Nastruzzi, C. |
Myrosinase-generated isothiocyanate from glucosinolates: isolation, characterization and in vitro antiproliferative studies. |
Bioorganic & medicinal chemistry |
||
2000 |
Nastruzzi, C., Cortesi, R., Esposito, E., Menegatti, E., Leoni, O., Iori, R., & Palmieri, S. |
In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. |
Journal of agricultural and food chemistry |
||
2014 |
Jie, M., Cheung, W. M., Yu, V., Zhou, Y., Tong, P. H., & Ho, J. W. |
Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. |
PloS one |
||
2020 |
Wang, C., Dissing, M. M., Agerbirk, N., Crocoll, C., Halkier, B. A. |
Characterization of Arabidopsis CYP79C1 and CYP79C2 by Glucosinolate Pathway Engineering in Nicotiana Benthamiana Shows Substrate Specificity Toward a Range of Aliphatic and Aromatic Amino Acids |
Front Plant Sci |
||
2018 |
Lee, C. M., Lee, J., Nam, M. J., Park, S.-H. |
Indole-3-Carbinol Induces Apoptosis in Human Osteosarcoma MG-63 and U2OS Cells |
Biomed Res Int |
||
2018 |
Li, B., Tang, M., Nelson, A., Caligagan, H., Zhou, X., Clark-Wiest, C.; Ngo, R., Brady, S. M., Kliebenstein, D. J. |
Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis |
Plant Cell |
||
2018 |
Czerniawski, P., Bednarek, P. |
Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants |
|||
2018 |
Nintemann, S. J., Hunziker, P., Andersen, T. G., Schulz, A., Burow, M., Halkier, B. A. |
Localization of the Glucosinolate Biosynthetic Enzymes Reveals Distinct Spatial Patterns for the Biosynthesis of Indole and Aliphatic Glucosinolates |
|||
2018 |
Petersen, A.; Wang, C.; Crocoll, C.; Halkier, B. A. |
Biotechnological Approaches in Glucosinolate Production |
J Integr Plant Biol |
||
2019 |
Sugiyama, R.; Hirai, M. Y. |
Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants |
Frontiers in Plant Science |
||
2020 |
Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C. E.; Burow, M.; Rollin, P.; Agerbirk, N. |
Glucosinolate Structural Diversity, Identification, Chemical Synthesis and Metabolism in Plants |
Phytochemistry |
||
2019 |
Jeschke, V.; Weber, K.; Moore, S. S.; Burow, M. |
Coordination of Glucosinolate Biosynthesis and Turnover Under Different Nutrient Conditions |
Front Plant Sci |
||
N/A |
2019 |
Bell, L. |
The Biosynthesis of Glucosinolates: Insights, Inconsistencies, and Unknowns |
Annu Plant Rev |
|
2019 |
Zheng, H.; Li, X.; Shi, L.; Jing, Y.; Song, Q.; Chen, Y.; He, L.; Wang, F.; Gao, J.; Bi, Y. |
Genome-Wide Identification and Analysis of the Cytochrome B5 Protein Family in Chinese Cabbage (Brassica Rapa L. Ssp. Pekinensis) |
Int. J. Genomics |
||
2019 |
Petersen, A.; Hansen, L. G.; Mirza, N.; Crocoll, C.; Mirza, O.; Halkier, B. A. |
Changing Substrate Specificity and Iteration of Amino Acid Chain Elongation in Glucosinolate Biosynthesis through Targeted Mutagenesis of Arabidopsis Methylthioalkylmalate Synthase 1 |
Biosci Rep |
||
2017 |
Nakano, R. T.; Piślewska-Bednarek, M.; Yamada, K.; Edger, P. P.; Miyahara, M.; Kondo, M.; Böttcher, C.; Mori, M.; Nishimura, M.; Schulze-Lefert, P.; et al. |
PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana |
Plant J |
||
2020 |
Kim, J. I.; Zhang, X.; Pascuzzi, P. E.; Liu, C. J.; Chapple, C. |
Glucosinolate and Phenylpropanoid Biosynthesis Are Linked by Proteasome-Dependent Degradation of PAL |
New Phytol |
||
2013 |
Huseby, S.; Koprivova, A.; Lee, B. R.; Saha, S.; Mithen, R.; Wold, A. B.; Bengtsson, G. B.; Kopriva, S. |
Diurnal and Light Regulation of Sulphur Assimilation and Glucosinolate Biosynthesis in Arabidopsis |
J Exp Bot |
||
2019 |
Lei, J.; Jayaprakasha, G. K.; Singh, J.; Uckoo, R.; Borrego, E. J.; Finlayson, S.; Kolomiets, M.; Patil, B. S.; Braam, J.; Zhu-Salzman, K. |
CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production |
Plant Physiol |
||
2020 |
Fernández-Calvo, P.; Iñigo, S.; Glauser, G.; Vanden Bossche, R.; Tang, M.; Li, B.; De Clercq, R.; Nagels Durand, A.; Eeckhout, D.; Gevaert, K.; et al. |
FRS7 and FRS12 Recruit NINJA to Regulate Expression of Glucosinolate Biosynthesis Genes |
New Phytol |
||
2015 |
Seguela-Arnaud, M.; Smith, C.; Uribe, M. C.; May, S.; Fischl, H.; McKenzie, N.; Bevan, M. W. |
The Mediator Complex Subunits MED25/PFT1 and MED8 Are Required for Transcriptional Responses to Changes in Cell Wall Arabinose Composition and Glucose Treatment in Arabidopsis Thaliana |
BMC Plant Biol |